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Grammars for icosahedral Danzer tilings 

Juan Garcia-Escudero 
Departamento de Fisica, Univenidad de Oviedo, 33007 Oviedo, Spain 

Received 13 February 1995 

Abstract. We have recently interpreted 2D quasi-periodic patterns in terms of substihltions. In 
this paper we extend this interpretation to 3D. In panicular we describe Danzer tilings in terms 
of word sequences of L systems. 

1. Introduction 

Tilings with icosahedral symmetry were obtained by Danzer in 1989 by inflation of four 
tetrahedra [l,  21. Recently these tilings have been derived by projection from the root lattice 
Dg [3]. On the other hand, in 1986 Socolar and Steinhardt [4] introduced a family of quasi- 
periodic tilings in 3D by four rhombic zonohedra. Roth [5]  and Danzer et al [6] have 
independently shown the equivalence of the Danzer tilings with the tilings of Socolar and 
Steinhardt. 

The very well known interpretation of the Fibonacci chain in term of a substitutional 
sequence has been extended in [7] to ZD. In that model a bracket structure has been 
introduced by means of production rules of a context free grammar (see [8] for the associated 
automaton). Not all the words belonging to the language generated by that grammar 
represent pieces of the pattems. It is possible to avoid this problem by using a different 
type of formal grammar known as the DOL system [91. Within the DOL-grammar approach 
all the words represent parts of the infinite patterns. 

L systems were originated by Lmdenmayer in 1968 to model biological developments 
in which parts of the developing organism change. simultaneously. In the description of the 
development of a red alga he also used a bracket structure. The simplest type of L system 
is known as a DOL system. 

A DOL system (see [lo]) is a triple G = {E ,h ,w]  where E is an alphabet, h is 
an endomorphism defined on the set E* of all the words over the alphabet C, and w,  
referred to as the axiom, is an element of E*. The word sequence generated by G consists 
of the words ho(w) = w, h(w), hz(o). h3(w), . . . and the language of G is defined by 
L(G) = [h i (w) / i  0). In what follows the endomorphism h will be defined by listing 
the productions for each letter. In the abbreviation  DOL, '0  means that the rewriting is 
context independent (initially, communication between the individual cells is zero-sided in 
the development) and D stands for deterministic: there is just one production for each letter, 
i.e. the totality of all productions defines an endomorphism on E*. 

2. The 2D case: Penrose and triangle patterns 

The triangle pattems were obtained in [ll] by projection from the root lattice Ad and they 
have the same basic tiles as the Robinson decomposition of the Penrose patterns [12]. In 
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this section we describe the patterns via word sequences of a DOL system. 
The alphabet is E = {ai, bi, ci, di, ( , ) I  where i E ZIO. The elements ai, ci on one hand, 

and hi, 4 on the other hand represent tiles with the same shape but they are distinguished by 
a colour: white for ai, bi ,black for ci and d;.  The tile ai is an acute isosceles triangle with 
(length of side)/(length of base) = r = (1 + ,6)/2, and bi represents an obtuse triangle 
with (length of side)/(length of base) = l / r .  The sides of bi have the same length as the 
basis of ai. We choose the same orientation for one side of the tile al and the basis of b1 
in such a way that the remaining tiles are obtained by succesive rotations of &/lo through 
a given vertex [7]. 

representing a tiIe can be used as an axiom. We take, 
for instance, w = al. The set of production rules for triangle patterns is (compare to [ 7 ] )  

Every element belonging to 

ai  ail) = ( ~ i - ~ b i + ~ - d  bi H (@T[bi l )  = (ci+lbi-I) 
Ci H ( @ T [ C i I )  = (ai-dii+lci+~) di ++ (@T[dil) = (ai-sdi+l) 
(H ( 1 H) 

ai H ( @ ~ k l )  = (ai+zci+ibi-i) 
ci H (@ptcil) = (ci-zai-ldi+s) 
(H ( ) -1. 

(1) 

and for Penrose patterns 

bi H (@~tbil) = (Ci i lb i -1)  

di H (@p[dil) = (ai-sdi+i) (2) 

Consider the following word derivation for the triangle patterns: 

ai H (cab&) H ((aid7cs)(csb3)(c4hzQ7)). 
In the second word of the sequence, if two letters follow one another, the corresponding 

oriented triangles are glued face to face in a unique way. The word ((uid~cs)(csb3)(~4bza7)) 
represents a part of a triangle pattern: the acute triangle ald7cs. the obtuse triangle c5b3 
and the acute triangle c4bza7 are glued face to face disregarding their internal composition, 
and again the prescription is unique. 

In order to study the symmetries of the patterns we consider the Coxeter group 
Hz = ( R 1 ,  R2/(R1Rz)s = R: = R; = e ) .  Now we define the action of HZ on the 
elements of representing tiles: 

R1 (ai) = Cg- i  Ri(bi) = d3-i Ri(ci) = ~ 9 - i  Ri(di) = b3-j 
Rz (u~)  = c7-t Rz(bi) = d1-j R z ( ~ j )  = Q7-i Rz(dj) = b1-j. 

We have Rk@; = @gRk (k = 1,Z) and also R& = @;Rk. 
In [73 we had a different commutation property for the triangle pattern case. Observe 

that we obtain a different derivation for the patterns with (1). 

3. The oriented tiles in icosahedral Danzer tilings 

The Danzer tetrahedra T = A ,  B ,  C. K have the property that every plane containing a facet 
t i  (t  U ,  6 ,  c ,  k and i = 1,2,3,4) of T is parallel to one of the fifteen mirror planes of a 
fixed regular icosahedron. The facets t i  in figure 1 are indicated by the index i = 1,2,3,4. 
In table 1 we show the dihedral angle and the lengths of the edges belonging to pairs of 
facets t i  n t j  (see [ Z ] ) .  

If we choose a cubic coordinate system (see for instance [ 13,141) based on a set of three 
orthogonal 2-fold axes of the icosahedron, the Miller indices of a plane and the direction 
perpendicular to it are the same. The general form of the indices for the 2-fold axes is 
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- - - -  
Figure 1. Outer (inner) Facets of the unfolded tetrahedra A ,  B. C, K (A,  B ,  C, K). 

Table 1. Definition of the tetrahedra A .  B, C. K 

(h + h's, k + k'r, I + 1'7) with h, h', k ,  k', 1 ,  I' integers. We choose the labelling for the 
mirror planes as 

Pl = (5. 1,1+r) 
P4 = (0, 0 , 2 r )  
P7 = (5,  -1.1 + 5 )  

pi0 = (-1, 1 f 5, 5 )  

P13 = (1 + 5, -5, 1) 
We will use eight basic tetrahedra represented by the letters T = A, g, C, K, A, B ,  

C, K. The tetrahedra T and T are mirror images (see figure 1) where, in this case and in 
what follows, we will suppose T = T .  In order to obtain all of the allowed oriented tiles 
we give an indexing to the letters. The notation T$ with a, p, y. 6 = 1,2,. . . ,15 means 
that the tile T has its facets t l ,  t2 ,  t3 and t4 lying on planes parallel to the mirror planes 
Pa, Pa, Py and Ps respectively. 

P2 = (-25, 0.0) 
Ps = (-z, 1,1+ r )  
Ps = (-1, -1 - r , ~ )  
Pi1 = (1, 1 + 5, r )  
PI4 = (1, -1 - 5, 5 )  

P3 = (-1 - r,  5,  1) 
Ps = (-5, -1, 1 + 5 )  

Pg = (1 + 5, r,  1) 
PI2 = (-1 - 5, -5.1) 

PIS = (0, -2r, 0). _ _  - _  
5-, 
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Consider the Coxeter group H3 = ( R I ,  Rz, R3/(R1Rd3 = (RzR3)’ = (&RI)’ = R: = 
RZ = R: = e) .  We take the reflections on the planes PI ,  Pz and P3 as the generators of 
R I ,  R2 and R3 respectively. In figure 2 we show how the mirror planes are transformed 
under the action of the generators of H3. If two boxes containing Pa and Pp are joined by 
a line crossed by k = 1,2 ,3  bars then Pa = Rk[Pfi]. The action of the generator Rk in T:; 
is &(T:;) = T:; if &(p,) = PG with w = 01, p, y ,  6. 

_-  

Figure 2. Transformation of the mirror planes P, under H3. 

The allowed oriented tetrahedra and the transformations between them under the action 
of the generators of f f 3  are shown in figures 3 4  where ordered sets of four tetrahedra are 
enclosed in boxes. Tetrahedra inside the same box have their facets t l ,  tZ  (for A ,  B ,  C )  
or k’ ,  k2, k3 lying on parallel planes (we remark that the tetrahedra can be glued together 
to form octahedra). Lines crossed by k = 1,2,3 bars join two boxes and broken lines 
or broken arrows also crossed by k bars join two tetrahedra inside the same box. If the 

are joined by a line crossed by k bars then the 
inside the boxes are transformed according to 

E = Rk[l;’]. On the other hand, if two tetrahedra E and inside the same box areioined 
by a broken line then E = Rk[l ; ]  and if they are joiked by a broken arrow Ti = Rk[r j ] .  If, 
given a diagram, we make the transformation T + T, we obtain another allowed diagram. 
If we use the notation R ; R j . .  . Rk Rij ... k and if we read ffom right to left we have, for 
instance, R I ~ ~ Z ~ L ~ Z I ~ Z ~ Z [ A ~ ~ I  = x;: 
4. Substitutional sequences for Danzer tilings 

As in the 2~ case we can interpret the tilings in terms of languages generated by grammars 
of type DOL. The geometric interpretation of the words is similar: if two letters follow one 
another the corresponding oriented tetrahedra are glued facet to facet in a unique way. 

figwe 3). 

The alphabet is now 

Every element of the alphabet except the brackets ) and ( can be used as an axiom. For 
the production rules we choose an ordering compatible with the inflation of the tetrahedra 
facets. It is possible to choose such an order in all the cases except one. In order to obtain 
the correct inflation for that facet we must introduce a bracket in one index. 

Y 6 p . 6  x y . 8  “y.6 Z y . 8  gy.6 
u,p,  Ea,#. c,p cl,p L )}. = [A::;, B$$ C&, 
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Figure 3. Transformation of the tetrahedra A$ under H3. 

Figure 4. Transformation of the tetrahedra B$ under H3. 
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I U 

Figure 5. Transformation of the terrahedm under H3. 

Figure 6. Tmformation of the tetrahedra K:;; under 4. 

QD[c$ and @ ; K ~ : Z  in QD[A$I and @po[By;6] we also have the same common facets el ' 
if we permute the letters or we transform T + T. 

From the set of production rules we can also see how the facets are inflated. For 
instance, if we want to know how the facet_b3is inflzted we must look for facets lying on 
planes parallel to Py. We obtain b3 H k2k2b2b2kZkz~.  Again, if two letters follow one 
another the corresponding triangles are glued edge to edge. The brackets arz necessary in 
order to obtain the correct inflation for the facet a,: in this case a1 H (b3)(k3k3b1). If we 
apply the production rules to one letter several times, we must be careful if we want to see 
how the facets are inflated and look for facets which do not correspond to common facets 
of two tiles represented by consecutive letters (see example 2 below). 

We can derive the tilings by following one of the paths A or B. 
(A) We give the production rules for a fixed set of tiles. The remaining production rules 

@) We use the production rules given in (3) and (4) and the diagrams from figures 3-6. 
are obtained by applying QpoRk = !?kQO where R k  are the generators of H3. 
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If we follow path A we must first give the production rules for a fixed set of tiles: 
1 9  139 

@D[K::i3.:3] K8;3BI,i 
"8.10 8.5 5.1 "3.9 4.9 

@D[c%O] = K3.1 K3.1 C10~7C10,7A1,3 

@D[B$'s] = K7,10K7,10B12.10B12,10 7,lO K7,10c1,3 
4 9 "2.9 K 2 . 1 1 B l . 1 1 ~ 5 , 1 0 ~ 2 , 1 0 K 2 . 8  CS.4~15.3~1,1SK1.6B5,6 

@D[A1:3] K15,4 15.4 2,4 1 4  15.4 15.4 9.5 9,s 8.3 8.3 1.3' 

12.1 "12,9"15,9 3.13 K12,13 "12.4-4.10 

To illustrate the procedure we give two examples. 
Example 1: 

1 9  139 
K!:i3 ++ (K8,'3Bi.j H ( (~D[K8:391)(~D[B:~]) )  

= ( ( @ D [ R ~ ~ ~ z [ K ~ ~ ~ ~ ~ ~ ) ( ~ D [ R ~ ~ ~ z ~ ~ z ~ ~ T J ~ z [ B : ~ ~ ~ I ~ ) )  

= ((Rz3z3iz[~~[~~;~~q.:3]1)(R3z3izi3zi3uiz[@~[B~.~~~11)) 
= ( ( K i ~ s B 3 ~ s ) ( K i i , n  i1 ,13~6~i3B6: i3Ki1 ,13  11,13Ci,3 )). 

3 7 9 7  6 1 g 6 , l S  "9 15 3 10 6.10 E6.14 "14.13 

We can now check that the facets are inflated in the right way: 
k' H ((k3b')(b3P)) 
k3 H ((k2b2)) 

"810 s s  S I  -39 4.9 

k2 H ((k1)(k42)) 
k4 H ((k'P&'pP)). 

Example 2: 

'::io - K3:1 4 : 1  C1h7C1h7A1,3 
H ((~D[R~[K~;~~I~.:~])(@D[R~[K~,~ -8.13 -4,1011) 

-4 10 
x(@~[R3iz i [C1:3  I~)(@D[A::;I)) 

-1,15"10.15 1,6 5.6 -12,l 124 4 10-7 2 5.2 

7 6 ' 3 . 6  
= ((Ks.3 4 . 3  )(Ks.3Bi.3)(K7,ioK7.ioCi:3 '%AIo,~) 

I2 9 "12 13-13 10 
X (&,io K7, io c9,; C9;5 40.d 

"29 211 111-510-210 2 8  84-133-115 1 6  5.6 
x(K1~,4K1~,4B2~4 B2:4 ' l i . 4  K14.4C9:5C9,; K8;3 KS:3B1.3))' 

4 10-7 2 The facet c2 lying on a plane parallel with P3 can be found in the pair Cl;3 Cl;,, but it 
comesponds to a inner coupling between the facets. We can obtain the correct inflation for 
the facets if we look only into the facets that do not correspond to inner couplings of the 
tetrahedra: 
c1 H ( ( ~ a ) ( k 3 b 1 ) ( ~ 4 c 1 2 ) ( b 3 ~ k 3 b 1 ) )  c2 H ( ( p b " ? ) ( k 2 b 2 ) ~ ) ~ P k 2 b 2 ) )  
c3 H ((&*b222-k2c4)) c4 H ( ( ~ ) ( ~ k Z c 4 a ' ) ( k 2 ~ ~ ~ ) ) .  

In order to derive the tilings following path B let us see how the sets of indices E{ can 
be obtained. The diagrams in figures 3-6 show that for fixed values of a, p, y and 8 the 
indices x and y in T$, T$, T$ (T  = A ,  B,  C) and in K$ are unique. This property 
also holds for the tiles of type T . .  We can obtain the indices of type E in the following way 
(the fact that the index t is obtained by looking for T:;; in the diagrams is indicated by 
T::; E ) :  

(i) [E] in @ p o [ ~ 3 :  

Bj:: =+ E 

(ii) [cl. €2, €3, €41 in Q&c:;$: 
Q&" * E1 A::; =+ €4 =+ €3 C::;: + e 



5. Conclusion 

We have given an interpretation of Danzer tilings in terms of substitutional sequences. The 
words representing the tilings also give information about the way the facets of the tiles are 
inflated. 

The notions of Eanslations, point group and space groups of standard crystallography 
have been generalized in [8,15-181, in order to construct a non-commutative 
crystallography. These studies are based in Aut(F,) (group of automorphisms of Fn, the free 
group with n generators). In that scheme one can find the elements of a non-commutative 
crystallography in which the commutativity of the translation group is broken and the point 
symmetry is preserved. The relationship between the model presented in this work and the 
non-commutative crystallogaphy of Aut(F,) should be explored. 
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